COMPUTE!

June, 1981, Issue 13.

Real Time Clock Subroutine
I wrote this subroutine a few years ago just as an
exercise and thought you might like (0 see it.

As opposed to the more conventional straight
line coding of real time clocks, this one uses a loop
to increment each value and check it against the
limit. Five zero page locations are required to hold
the time and they must be properly initialized
prior to use. Keep in mind that this is just a SUB-
ROUTINE. The complete real time nperating
system must be written which uses RTCLK as the
clock update routine.

Can you write one that is shorter?? If so, send
it in and it may be published. How about one that's
shorter AND faster?

COMPUTE! June, 1981, Issue 13,

HDE ASSEMELER REV 2.2

LINE# AlDR ORJECT LABEL SOURCE FAGE 0001
01-00035 2000 76502 REALTIME CLOCK SUBROUTINE
01-0010 2000 SWRITTEN BY E REHNKE 12¢31,77
Q1-0015 2000 FTHE IDEA COMES FROM BYTE MAG
QL0020 2000 FNOV, 77 P, 50. IT WAS CONVERTED
Q1-0025 2000 JFROM A 6800 FROGRAM JUST TO SEE
01-0030 2000 §HOW EASY IT BE TO DOD.
01-0035 2000 i
01-0040 2000 sTHIS ROUTINE 15 SETUF TO USE
01-0045 2000 FTHE HARDWARE FROM BYTEs NOV.77
01-0050G 2000 : #F+ 72 AND CONSISTS OF THE &40 HZ.
01-0055 2000 FLINE FREQs, DIVIDED DOWN AND
01-0060 2000 FFROFERLY CONDITIONED TO FORM A
01-0065 2000 FTTL COMPATIBLE 15 HZ. CLOCK WHICH
01-0079 2000 715 AFFLIED TO THE INTERRUFT INFUT
010075 2000 FON KIM.
01-0080 2000 ;
01-0083 2000 *THE FOLLOWING ZFAGE CLOCK REGS
01-0090 2000 FMUST RE INITIALIZED TO THE
01-00953 2000 $CORRECT TIME FPRIOR TO STARTING
01-0100 2000 sTHE REAL TIME CLOCK.
01-0105 2000 FTHEY ARE A5 FOLLOWS:
Q1-0110 2000 H $00EO0= DAYS COUNTER
01~0115 2000 ¥ $00EL1= HOURS COUNTER
01-0120 2000 P $00E2= MINUTES COUNTER
01-0125 2000 7 $00E3= SECONDS COUNTER
01-0130 2000 § $00E4= FRACTIONAL COUNTER
01-0135 2000 §
01-0140C 2000 X=8E0
01-0145 O0QEO CLKREG %=%+5
01-0150 OO0ES $
01-0155 O00ES ¥=$2000
01-01460 2000 F8 CLOCK SED FWORK IN THE DECIMAL MOLE
01-0145 2001 A2 04 LDX #$4 FINITIAL OFFSET
01~0170 2003 v
01-0GL7% 2003 18 CKLOOF CLC
01-0180 2004 BI EO LIA CLKREG: X FGET THE TIME...
01-0185 2006 &9 01 ADC #61 F1'0 A DECIMAL INCREMENT...
01-0120 2008 93 EO STA CLKREG-X FAND FUT IT BACK.
01-0195 2008 DD 17 20 CMF TABLEsX §CHECK IT AGAINST THE LIMIT.
010200 20000 DO 07 ENE RETURN §NOT YET? THEN LEAVE.
01-0205 200F A% 00 LIA ¥$0 i IF 80y CLEAR THAT REGISTER.
01-0210 2011 95 EC 6TA CLKREGeX
01-0215 2013 CA DEX 16 IT TIME TO LEAVE?
010220 2014 10 EI BFL CKLOOF $NOT DONEy DO SOME MORE.
01-0225 2016 &0 RETURN RTS8 JEACK TD MAIN LINE.
01-0230 2017 ¥
01-0R235 2017 99 TABLE LBYTE $29:324y5605%60r615
01-0235 2018 24
010235 2019 &0
010235 201a &0
010235 201B 1%
01-0240 201C FINIGH JENI

ERRORS = 0000

ENDN OF ASSEMERLY = 201H
ASH

Figure 1: A simple circuit which processes u 6.3 VAC reference signal derived from the power companies’ 60 Hz grid to produce
a digital logic level square wove at 15 Hz which can drive an intercupt line of ¢ typical processor. The disable switch is optional
and can be left out if the interrupt handlers are permanently loaded in ROM; otherwise, interrupts must he manually disabled
while the systems software is bootstrapped into volatile memory.

-5V

Aldz- a4 1547
LINE
ISOLATION | i)
o 5 =12 9 =2
11OVAC R —— © o T 9] i1 DISABLE \SHz TO
: % - " T
Sin: RErERENCE | 100K 3[\2 N 2z |, i 2 |, s]\‘n NMI INPYT
a 4 I+] of 13
3
&.3vac l/ = 56 i S 53
34050 ,J’ Lpans r7|7 ,_L EEAGS0
2
J9E THt SMALLEST
LGHTEST & 3VAC FILAMENT
TRANSFORMER AVAILABLE POWER WIRING
5 {AUMBER) L1 RE.. i55%., i6ND]
1 CD4p50 | 8
1c2 goseiy ta | 7
NOTE UNUSED PINS 7.9.1
54 OF 1C| ARE GROUNDED

James R Sneed
13831 NE 8th, Apt 86
Ballgvue WA 98005

72

1By 14 Novembed 1977

Whenever a computer is interacting with
the real world, cither through sensors or
actuators, a rezl time clock can be valuable.
Using a real time clock, the computer can
run programs at specified times or intervals,
or the computer may record the times at
which events are sensed

There are two basic types of real time
clocks wsed in computing systems: the
external (hardware) clock and the inter-
nal {software) clock. An cxternal clock uses
hardware to keep track of time, and periodi-
cally or on command transmits the time to
the computer. [Robert Grappel's article on
poge 68 of this issue shows one approach
to stuch aclock .. .CHJ An internal software
clock has hardware which interrupts the
computer at regular intervals, and software
which keeps track of time by incrementing
a register whenever the compuler receives 4
timing interrupt.

The hardware clock imposes a small soft-
ware burden on the computer, and being
separate from the computer, it nced not be
reset whenever the computer is shut oli. The
software clock imposes a larger software
burden on the computer, and the clock must

Clock

be initialized if the computer has been com-
pletely halted or had its power shut off. In
applications where the compuler operates
continuously, the advantages of the software
clock due to hardware simplicity outweigh
its disadvantages due to increased software
burden, and the software clock is the logical
choice for a real time clock.

There are two key considerations invol-
ved in selecting the interrupt rate for the
software clock. First, where the interrupt
clock is derived by dividing a higher fre-
guency clock, such as o 1 MH/ compuier
clock, hardware simplicity favors as high an
interrupt rate as possible, but the computa-
tional overhead of interrupl response in-
creases with increasing interrupt rate.
Second, a low interrupt rate produces a low
computational burden but decreases time-
keeping resolution and programming flexi-
bility. Since my sysltem reguires no routines
to be performed more otten than 15 times
per second, | decided that a 15 Hy interrupt
derived by dividing the 60 Hz power line
frequency by 4 would be an adequate inter-
rupt rate. This gives a minimum event to
event resolution of 67 ms.

Listinng 12 Interrupt handler. This routine contains the overhead needed to field an NM{ inter-
ript on u 6502 processor, save the stite of the processor, call an imterrupt processing sub-
rottine, restore the stute of the processor, and return from the interrup!t event. If the jump at
focation 200 is replaced by NOP operations, this program wiil spin its wheels 15 times a second,
doing nothing in response (o the 15 Hz signal produced by the circuit of figure 1. With the

exception of the (SR at location 206, this routine is independent of the location in memory of

the software discussed in this urticle.

Hexadecimal Hexadecimal

Address Code Op

0200 ag PHA
Q201 8A TXA
0202 a8 PHA
0203 98 TYA
0204 a8 PHA
0206 20 00 00 JSR

0209 68 PLA
020A AB TAY
0200 63 PLA
0z0C AA TAX
0200 68 PLA
020E 40 RTI

FFFA 00 02

The dircuit in figure | produces the
15 Hy tnterrupts, The 60 He signal is taken
from the secondary of 4 6.3 V tilamen1 type
ramsformer. {The term s a hangover from
vacuum tube days when many tubes had
6.3 V tilaments somewhalt like incandescent
light bulbs), The input 10 ICIA, a CMOS
bufter, is clamped between S V and ground
by diodes DT and D2,
silicon small signa!l diodes at hand. Resistor
R2 provides positive teedback to produce
aboul o hall 4 volt o hysteresis in the
switching ol the bulfer. This hysteresis
reduces false interrupts due to line voltage
fluctuations and transients, The two D type
flip flops in 1C2 are used as cascaded divide-
by-two circuits. The 15 Hz output from IC2
is bulfered 1o drive TTL loads by 1C18. To
prevenl runaway power consumplion and
the resulting chip destruction, the unused
inputs of the CMOS integrated circuits are
srounded.

The nonmaskable interrupt of the 6502
is cdge triggered; that is, the processor re-
¢eives an interrupt whenever the voltage on
the nonmashable interrupt line goes from
high (=24 V} (0 low (<24 V). The non-
mishable interrupt line can then stay low
without geacrating another interrupt.
When the processor receives 4 nonmaskable
interrupt it jumps to the memory address
stored at FEFA and | FFB, and pushes the
address (rom which it was interrupted and

which can by any

Commantary

Push accumulator onto stack
Transfer X register to accumulator
Push X register onto stack
Transfer ¥ register te accumulatar
Push ¥ register onto stack

Cali CLOCK

Pull Y register from stack
Transter accumulator 10 Y register
Pull X register from stack
Transter accumulator to X register
Pull accumulator from stack
Rerurn from interrupt

Interrupt address vectar

the processor status anto the stack so that
it can return 10 the preinterrupl computa-
tion as soon as it has processed the interrupt.
A switch is shown between the 15 Hy inter-
rupl and the NMI line so that interrupts
can be disabled after power is applied until
the interrerupt handler for NMI has been
loaded in volatile memory. If the interrupt
handler is in read only memory, this switch
can be omitted.

The contents of the accumulator and the
X and Y registers should he saved by soft-
ware when the interrupt is received and con-
trol switches to the interrupt handler pro-
gram. This is done by pushing them onto
the stack using appropriate instructions.
Once the preinterrupt state has been sately
preserved, the processing done as a result of
the intervupt is performed. Alter the inter-
rupt program has been completed, the
preinterrupt contents of the Y and X re-
gisters and the accumulator are restored by
pulling them off the stack. The processor
then pulls the preinterrupt processor status
and program address from the stack and
returns 1o the previous computation. Listing
I is a sample interrupt handler,

Listing 2 is a 24 hour clock generated in
software by accumulating 15 Hz interrupts.
This rogram contains only relative jumps
and so is easily relocatable, either in volatile
memory, EROM or PROM.

The operation of the program real time

BY TE Novemnbge 1977

73

74

BY | November 1977

Listing 2. Time of day clock. If the jump atf line 206 in the interrupt handler of listing 1 refer-
ences the CLOCK routine, locations C4 to C7 in memory uddress space dre continously updated
with Nours, minutes, seconds and 1/15 seconds respectively as the 15 Hz interrupts invoke its
uction. The 6502 code of this routine has been constructed ro use refative branches only, so
that it con be relocated anywhere i miemory address space at the convenience of its user

without modification of the object code.

CLOCK {Real Time Clock)

Hexadacimal Hexadecimal

Address Caode Label
0006 F8 CLOCK
0001 18

0002 A5 C7

0004 63 01

0006 85 C7

00038 38

0009 E9 15

0008 00 2C

000D 85 C7

000F A5 C6

0011 18

0012 68 01

0014 85 CB

0016 38

o017 E9 B0

0019 D0 1E

[113]:] 85 C6

0010 A5 C5

001F 18

0020 68 01

0022 85 C5

0024 38

0025 E9 60

0027 00 1C¢

0029 85 C5

0028 A5 C4

002D 18

Q02E 63 01

0030 85 C4

0032 38

0033 E9 22

0035 Do 02

0037 85 C4

0039 D8 END
003A 60

00C4 HOURS
00C5 MIN
00Ce SEC
00C7 FSEC

CLOCK is straightforward. Time is stored in
BCD in the first page of memory: hours in
00C4, minutes in O0CS, seconds in 00C6,
and 115 seconds in Q0C7, When an inler-
rupt is received and the preiaterrupt state
saved, the interrupt handier will call the real
time¢ CLOCK at 0000 (location 0206 in
listing 1), The second’s Iraction is incre-
mented and compared to 15, it is less than
15 the processor will jump 1o the end of the
clock program for return, but if it equals 15
the second's fraction is reset to sero and the
seconds are incremented. Seconds, minules
and hours are handled similarly, counting
maodulo 60, 60 and 24 respectively. At the
end o1 the program the processor returns to
the interrupt handler. The clock can be set
simply by loading the desired time inte the
time memory locations.

Op Operand Commentary

SED Set decimal mode
CcLC Clear carry

LDA FSEC Load seconds fraction
ADC 1 Incr seconds fraction
STA FSEC Store secands Iraction
SEC Set carry

SBC 15 Subtract 156

8NE END 1 not 15, 9o to end
STA FSEC Reset secands fraction
LDA SEC Load seconds

cLC Clear carry

ADC 1 Incr seconeds

STA SEC Stare seconds

SEC Set carry

SBC 60 Subtract 60

BNE END If not 60, go 10 end
S5TA SEC Reset seconds

LDA MIN Load minutes

cLC Clear carry

ADC 1 Incr minutes

STA MIN Store minutes

SEC Set carry

s8C 60 Subtract 60

BNE END If not 60, go to end
STA MIN Reset minutes

LDA HOURS Load hours

CLC Clear carry

ADC 1 Increment hours
STA HOURS Store hours

SEC Setcarry

S8C 24 Subtract 24

BNE END 1t not 24, go 1o end
STA HOURS Reset hours

CLD Clear decimal mode
RTS Return

Storage {or haurs
Storage for minutes
Storage for seconds
Storage for seconds/15

By comparing desired program times with
the time of the real time CLOCK program,
the processor may perform programs at any
desired interval, up to one day, which is
expressable as & multiple ol 1/15 second.
As an example, g program to he performed
once per second would be executed only
at those times when CLOCK has counted
the second’s fruction equdl to sero.

It is important that the real time CLOCK
should not impose an unreasonable compu-
tational burden on the computer. Using a
15 He interrupt and the program shown
here, this criterion is satisfied. When run in
a computer using a4 6502 processor with a
1 MH7 clock, the interrupt service requires
about 1100 us per second. This 0.1% cannot
be called an excessive burden on the
computer.m

